Asymmetric binding of the high-affinity Q(H)(*)(-) ubisemiquinone in quinol oxidase (bo3) from Escherichia coli studied by multifrequency electron paramagnetic resonance spectroscopy.
نویسندگان
چکیده
Ubiquinone-2 (UQ-2) selectively labeled with (13)C (I =(1)/(2)) at either the position 1- or the 4-carbonyl carbon is incorporated into the ubiquinol oxidase bo(3) from Escherichia coli in which the native quinone (UQ-8) has been previously removed. The resulting stabilized anion radical in the high-affinity quinone-binding site (Q(H)(*)(-)) is investigated using multifrequency (9, 34, and 94 GHz) electron paramagnetic resonance (EPR) spectroscopy. The corresponding spectra reveal dramatic differences in (13)C hyperfine couplings indicating a strongly asymmetric spin density distribution over the quinone headgroup. By comparison with previous results on labeled ubisemiquinones in proteins as well as in organic solvents, it is concluded that Q(H)(*)(-) is most probably bound to the protein via a one-sided hydrogen bond or a strongly asymmetric hydrogen-bonding network. This observation is discussed with regard to the function of Q(H) in the enzyme and contrasted with the information available on other protein-bound semiquinone radicals.
منابع مشابه
Q-band electron nuclear double resonance (ENDOR) and X-band EPR of the sulfobetaine 12 heat-treated cytochrome c oxidase complex.
Heat treatment of the bovine cytochrome c oxidase complex in the zwitterionic detergent sulfobetaine 12 (SB-12) results in loss of subunit III and the appearance of a type II copper center as characterized by electron paramagnetic resonance (EPR) spectroscopy. Previous authors (Nilsson, T., Copeland, R. A., Smith, P. A., and Chan, S. I. (1988) Biochemistry 27, 8254-8260) have interpreted this t...
متن کاملHeme-copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli.
The cytochrome bo quinol oxidase of Escherichia coli is one of two respiratory O2 reductases which the bacterium synthesizes. The enzyme complex contains copper and 2 mol of b-type heme. Electron paramagnetic resonance (epr) spectroscopy of membranes from a strain having amplified levels of this enzyme complex reveals signals from low- and high-spin b-type hemes, but the copper, now established...
متن کاملModified, large-scale purification of the cytochrome o complex (bo-type oxidase) of Escherichia coli yields a two heme/one copper terminal oxidase with high specific activity.
The cytochrome o complex is a bo-type ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. This complex has a close structural and functional relationship with the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. The specific activity, subunit composition, and metal content of the purified cytochrome o complex are not consistent for different preparative protocols r...
متن کاملELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTROSCOPY AND GEOCHEMISTRY IN TIN EXPLORATION AT RENISON, TASMANIA AUSTRALIA
Rock powder of dolomite samples from the Renison mine area of Tasmania, Australia were analyzed by electron paramagnentic resonance spectroscopy (EPR), Atomic Absorption and Mass Spectrometer to identify alteration related to mineralisation. The least-altered dolomite samples, which are not effected by circulation of diagenetic and hydrothermal fluids are characterised by low Mn and Fe and ...
متن کاملThe function of ubiquinone in Escherichia coli.
1. The function of ubiquinone in Escherichia coli was studied by using whole cells and membrane preparations of normal E. coli and of a mutant lacking ubiquinone. 2. The mutant lacking ubiquinone, strain AN59 (Ubi(-)), when grown under aerobic conditions, gave an anaerobic type of growth yield and produced large quantities of lactic acid, indicating that ubiquinone plays a vital role in electro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 42 19 شماره
صفحات -
تاریخ انتشار 2003